Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 909
Filtrar
1.
Food Chem ; 448: 139182, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569413

RESUMO

Amylosucrase (ASase) efficiently biosynthesizes α-glucoside using flavonoids as acceptor molecules and sucrose as a donor molecule. Here, ASase from Deinococcus wulumuqiensis (DwAS) biosynthesized more naringenin α-glucoside (NαG) with sucrose and naringenin as donor and acceptor molecules, respectively, than other ASases from Deinococcus sp. The biotransformation rate of DwAS to NαG was 21.3% compared to 7.1-16.2% for other ASases. Docking simulations showed that the active site of DwAS was more accessible to naringenin than those of others. The 217th valine in DwAS corresponded to the 221st isoleucine in Deinococcus geothermalis AS (DgAS), and the isoleucine possibly prevented naringenin from accessing the active site. The DwAS-V217I mutant had a significantly lower biosynthetic rate of NαG than DwAS. The kcat/Km value of DwAS with naringenin as the donor was significantly higher than that of DgAS and DwAS-V217I. In addition, NαG inhibited human intestinal α-glucosidase more efficiently than naringenin.


Assuntos
Proteínas de Bactérias , Biotransformação , Deinococcus , Flavanonas , Glucosídeos , Glucosiltransferases , Inibidores de Glicosídeo Hidrolases , Flavanonas/metabolismo , Flavanonas/química , Deinococcus/enzimologia , Deinococcus/metabolismo , Deinococcus/química , Deinococcus/genética , Glucosiltransferases/metabolismo , Glucosiltransferases/química , Glucosiltransferases/genética , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glucosídeos/metabolismo , Glucosídeos/química , Simulação de Acoplamento Molecular , Cinética , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química
2.
Drug Dev Res ; 85(2): e22170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38481011

RESUMO

A four-step synthetic process has been developed to prepare 1,3,5,8-tetrahydroxyxanthone (2a) and its isomer 1,3,7,8-tetrahydroxyxanthone (2b). 25 more xanthones were also synthesized by a modified scheme. Xanthone 2a was identified as the most active inhibitor against both α-glucosidase and aldose reductase (ALR2), with IC50 values of 7.8 ± 0.5 µM and 63.2 ± 0.6 nM, respectively, which was far active than acarbose (35.0 ± 0.1 µM), and a little more active than epalrestat (67.0 ± 3.0 nM). 2a was also confirmed as the most active antioxidant in vitro with EC50 value of 8.9 ± 0.1 µM. Any structural modification including methylation, deletion, and position change of hydroxyl group in 2a will cause an activity loss in inhibitory and antioxidation. By applying a H2 O2 -induced oxidative stress nematode model, it was confirmed that xanthone 2a can be absorbed by Caenorhabditis elegans and is bioavailable to attenuate in vivo oxidative stress, including the effects on lifespan, superoxide dismutase, Catalase, and malondialdehyde. 2a was verified with in vivo hypoglycemic effect and mitigation of embryo malformations in high glucose. All our data support that xanthone 2a behaves triple roles and is a potential agent to treat diabetic mellitus, gestational diabetes mellitus, and diabetic complications.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Xantonas , Humanos , Relação Estrutura-Atividade , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Complicações do Diabetes/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Xantonas/farmacologia , Xantonas/uso terapêutico , Simulação de Acoplamento Molecular , Diabetes Mellitus/tratamento farmacológico
3.
Chem Biodivers ; 21(4): e202400236, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380697

RESUMO

The phytochemical investigation of Viburnum chinshanense leaves led to the isolation and identification of four new phenolic glycosides, viburninsides A-D (1-4), and eight known analogues (5-12). The structures of the four undescribed compounds were determined by spectroscopic techniques, including 1D NMR, 2D NMR, and HRESIMS, and their containing sugar units were confirmed by acid hydrolysis and HPLC analysis of the monosaccharide's chiral derivatives. Additionally, the α-amylase and α-glucosidase inhibitory activities of the isolated compounds were assessed. Compounds 1, 2, 4, 9, and 10 exhibited potential inhibitory activities against α-amylase and α-glucosidase with IC50 values ranging from 35.07 µM to 47.42 µM and 18.27 µM to 43.65 µM, respectively. Molecular docking analysis of compound 4 with the strongest inhibition against the target enzymes was also conducted.


Assuntos
Glicosídeos , Viburnum , Glicosídeos/química , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/química , alfa-Amilases , Simulação de Acoplamento Molecular , Fenóis/farmacologia
4.
J Agric Food Chem ; 72(9): 4747-4756, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38335161

RESUMO

This study examines the inhibitory effects of a range of sweeteners on α-glucosidase. Our findings revealed that only one natural sweetener, namely, glycyrrhetinic acid 3-O-mono-beta-d-glucuronide (GAMG), derived from licorice, exhibited a mixed-type inhibition against α-glucosidase with a IC50 value of 0.73 ± 0.05 mg/mL. The fluorescence intensity of α-glucosidase was quenched by GAMG in the formation of an α-glucosidase-GAMG complex. GAMG has been shown to induce conformational changes in α-glucosidase, likely through hydrogen bonding, van der Waals force, and alkyl-alkyl interactions with amino acid residues, including Arg 281, Leu 283, Trp 376, Asp 404, Asp 443, Trp 481, Asp 518, Phe 525, Ala 555, and Asp 616. Additional animal validation experiments demonstrated that GAMG slowed starch digestion, thereby attenuating the postprandial glycemic response. Taken together, these findings provide evidence that GAMG is a natural sweetener with potent inhibitory activity that selectively targets α-glucosidase. This study supports the use of GAMG as a natural sweetener, which holds a high biological value and may be beneficial for managing postprandial hyperglycemia.


Assuntos
Ácido Glicirretínico , Hiperglicemia , Animais , Ácido Glicirretínico/química , Glucuronídeos/metabolismo , alfa-Glucosidases/química , Hiperglicemia/tratamento farmacológico , Edulcorantes , Inibidores de Glicosídeo Hidrolases
5.
J Sci Food Agric ; 104(6): 3767-3775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284463

RESUMO

BACKGROUND: Crataegus orientalis Pall. ex M. Bieb fruit (COPMB) is extensively used as a source of various products in the medicinal-aromatic field and holds the potential for erosion control, ornamental purposes, food source, and economic benefits for forest villagers from its fruits. This study aims to determine the chemical components and biological activities of extracts prepared from COPMB using different solvents. RESULTS: The present work was designed to define the antioxidant activity [phosphomolybdenum (total antioxidant capacity), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric ion-reducing antioxidant capacity (CUPRAC) and metal chelating activity (MCA)], phytochemical screening analysis, enzyme inhibitor (α-amylase, α-glucosidase and tyrosinase) potential, and liquid chromatography-high resolution mass spectrometry (LC-HRMS) secondary metabolite profiling in different extracts of COPMB. The results of LC-HRMS revealed that fumaric acid was the main phenolic compound in all extracts. Among the extracts, ethyl acetate extract has the highest phytochemical and antioxidant properties [total phenolic content (TPC): 32.5 mg GAE/g, total flavonoid content (TFC): 12.2 mg QE/g, ABTS: 213.0 mg TE/g; CUPRAC: 126.0 mg TE/g, MCA: 145.0 mg EDTA/g; FRAP: 122.8 mg TE/g; TAC: 2.8 mmol TE/g]. Ethyl acetate and methanol extracts are more effective in α-amylase (0.27 ± 0.01 mg/mL; 0.12 ± 0.00 mg/mL), α-glucosidase (0.63 ± 0.02 mg/mL; 0.77 ± 0.02 mg/mL) and tyrosinase (0.03 ± 0.00 mg/mL; 0.03 ± 0.00 mg/mL) enzyme inhibition potentials compared to standard acarbose (0.75 ± 0.02 mg/mL for α-amylase; 1.11 ± 0.03 mg/mL for α-glucosidase) and kojic acid (0.04 ± 0.00 mg/mL). CONCLUSION: The findings from this study suggest that COPMB could serve as a valuable source of natural agents for the food and pharmaceutical industry. © 2024 Society of Chemical Industry.


Assuntos
Acetatos , Benzotiazóis , Crataegus , Frutas , Ácidos Sulfônicos , Solventes/química , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Monofenol Mono-Oxigenase , alfa-Glucosidases/química , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Amilases , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química
6.
J Biomol Struct Dyn ; 42(4): 1985-1998, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37098807

RESUMO

We report in this work a synthesis of novel triazolo[1,5]benzodiazepine derivatives by the 1,3-dipolar cycloaddition reaction of N-aryl-C-ethoxycarbonylnitrilimines with 1,5-benzodiazepines. All the structures of the new compounds were determined from their NMR (1H and 13C) and HRMS. Then, X-ray crystallography analysis of compound 4d confirmed the stereochemistry of cycloadducts. The compounds 1, 4a-d, 5a-d, 6c, 7 and 8 were evaluated for their in vitro anti-diabetic activity against α-glucosidase. The compounds 1, 4d, 5a and 5b showed potential inhibitory activities compared to standard acarbose. Additionally, an in silico docking study was conducted to look into the active binding mode of the synthesized compounds within the target enzyme.Communicated by Ramaswamy H. Sarma.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Reação de Cicloadição , Raios X , Benzodiazepinas , Estrutura Molecular , Relação Estrutura-Atividade
7.
J Biomol Struct Dyn ; 42(1): 244-260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37096830

RESUMO

In the present study, a series of 2-amino-4,6-diarylpyrimidine derivatives was designed, synthesized, characterized and evaluated for their in vitro α-glucosidase and α-amylase enzyme inhibition assays. The outcomes proved that this class of compounds exhibit considerable inhibitory activity against both enzymes. Among the target compounds, compounds 4p and 6p demonstrated the most potent dual inhibition with IC50 = 0.087 ± 0.01 µM for α-glucosidase; 0.189 ± 0.02 µM for α-amylase and IC50 = 0.095 ± 0.03 µM for α-glucosidase; 0.214 ± 0.03 µM for α-amylase, respectively as compared to the standard rutin (IC50 = 0.192 ± 0.02 µM for α-glucosidase and 0.224 ± 0.02 µM for α-amylase). Remarkably, the enzyme inhibition results indicate that test compounds have stronger inhibitory effect on the target enzymes than the positive control, with a significantly lower IC50 value. Moreover, these series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC50 between 0.087 ± 0.01 µM to 1.952 ± 0.26 µM. Furthermore, molecular docking studies were performed to affirm the binding interactions of this scaffold to the active sites of α-glucosidase and α-amylase enzymes. The quantitative structure-activity relationship (QSAR) investigations showed a strong association between 1p-15p structures and their inhibitory actions (IC50) with a correlation value (R2) of 0.999916. Finally, molecular dynamic (MD) simulations were carried out to assess the dynamic behavior, stability of the protein-ligand complex, and binding affinity of the most active inhibitor 4p. The experimental and theoretical results therefore exposed a very good compatibility. Additionally, the drug-likeness assay revealed that some compounds exhibit a linear association with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , Relação Estrutura-Atividade , alfa-Amilases , Estrutura Molecular
8.
Mol Biotechnol ; 66(3): 554-566, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37280483

RESUMO

A lot of research has been done on using natural items as diabetes treatment. The molecular docking study was conducted to evaluate the inhibitory activities of urolithin A against α-amylase, α-glucosidase, and aldose reductase. The molecular docking calculations indicated the probable interactions and the characteristics of these contacts at an atomic level. The results of the docking calculations showed the docking score of urolithin A against α-amylase was -5.169 kcal/mol. This value for α-glucosidase and aldose reductase was -3.657 kcal/mol and -7.635 kcal/mol, respectively. In general, the outcomes of the docking calculations revealed that urolithin A can construct several hydrogen bonds and hydrophobic contacts with the assessed enzymes and reduces their activities considerably. The properties of urolithin against common human breast cancer cell lines, i.e., SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE were evaluated. The IC50 of the urolithin was 400, 443, 392, 418, 397, 530, 566 and 551 against SkBr3, MDA-MB-231, MCF-7, Hs578T, Evsa-T, BT-549, AU565 and 600MPE, respectively. After doing the clinical trial studies, the recent molecule may be used as an anti-breast cancer supplement in humans. IC50 values of urolithin A on α-amylase, α-glucosidase, and aldose reductase enzymes were obtained at 16.14, 1.06 and 98.73 µM, respectively.


Assuntos
Aldeído Redutase , Neoplasias da Mama , Humanos , Feminino , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , alfa-Amilases/química , alfa-Amilases/metabolismo , Neoplasias da Mama/tratamento farmacológico
9.
Drug Dev Res ; 85(1): e22128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984820

RESUMO

In a search for novel nonsugar α-glucosidase inhibitors for diabetes treatment, a series of N-(phenylsulfonyl)thiazole-2-carboxamide derivatives were designed and synthesized, the α-glucosidase inhibitory activities were then evaluated. Several compounds with promising α-glucosidase inhibitory effects were identified. Among these, compound W24 which shows low cytotoxicity and good α-glucosidase inhibitory activity with an IC50 value of 53.0 ± 7.7 µM, is more competitive compared with the commercially available drug acarbose (IC50 = 228.3 ± 9.2 µM). W24 was identified as a promising candidate in the development of α-glucosidase inhibitors. Molecular docking studies and molecular dynamics simulation were also performed to reveal the binding pattern of the active compound to α-glucosidase, and the binding free energy of the best compound W24 was 36.3403 ± 3.91 kcal/mol.


Assuntos
Inibidores de Glicosídeo Hidrolases , Tiazóis , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiazóis/farmacologia , Tiazóis/química , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Estrutura Molecular
10.
J Biochem Mol Toxicol ; 38(1): e23573, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37934567

RESUMO

Natural compounds, such as carotenoids, flavonoids, anthocyanins, or terpenoids, are physiologically active components found in plants (pigments), often known as phytochemicals or phytonutrients. The in vitro cytotoxic and anticolon cancer effects of biologically bavachin, bavachinin, artepillin C, and aromadendrin compounds against SW48, SNU-C1, COLO 205, RKO, LS411N, and SW1417 cancer cell lines were assessed. Results of enzymes and antibacterial, antifungal were in level of micromolar that is good impacts. These natural compounds may be antidiabetic, anticancer, and antibacterial candidates for drug design. IC50 results were obtained between 14-19 and 5-119 µM for α-amylase and α-glucosidase, respectively. Good inhibitor Bavachinin was detected for both enzymes (IC50 for α-amylase: 14.37 µM and IC50 for α-glucosidase: 5.27 µM). The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against pancreatic α-amylase and α-glucosidase were assessed by conducting the molecular docking study. The chemical activities of aromadendrin, artepillin C, bavachin, and bavachinin against some of the expressed surface receptor proteins (CD44, CD47, CXCR4, EGFR, folate receptor, HER2, and endothelin receptor) in the mentioned cell lines were investigated using the molecular docking calculations. The results illustrated the atomic-level properties and potential interactions. These chemicals have high binding affinities to the enzymes and proteins, according to the docking scores. In addition, the compounds formed strong contacts with the enzymes and receptors. Thus, these compounds could be potential inhibitors for enzymes and cancer cells.


Assuntos
Antocianinas , Neoplasias , Fenilpropionatos , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , alfa-Amilases , Antibacterianos
11.
J Biomol Struct Dyn ; 42(4): 1952-1955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37539686

RESUMO

Previous in vivo studies of Morinda citrifolia (Rubiaceae) reported that the extract inhibited α-amylase and reduced blood glucose levels in streptozotocin-induced diabetes mice. Moreover, molecular docking studies confirmed that ursolic acid and sterol compounds contained in the fruit interacted with important residues in the binding site of α-amylase and α-glucosidase. Our work aimed to study the complex stability of stigmasterol (which has been isolated from the M. citrifolia fruit for the first time) and beta-sitosterol towards α-amylase and α-glucosidase by employing molecular dynamics simulation on GROMACS 2016.3 embedded with the AMBER99SB-ILDN force field. The simulation was carried out for 100 ns at 310 oK. Based on the RMSD and RMSF graphs, the complexes of stigmasterol/α-amylase and stigmasterol/α-glucosidase are more stable compared to acarbose, the known inhibitor of both enzymes. Moreover, beta-sitosterol indicates a better stability complex with α-glucosidase compared to that of acarbose. Interestingly, the affinity of stigmasterol and beta-sitosterol to both enzymes, in terms of the total binding energy, is stronger than that of acarbose. Taken together, stigmasterol and beta-sitosterol in M. citrifolia fruit may have the potency to be developed as α-amylase and α-glucosidase inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Acarbose , Morinda , Sitosteroides , Camundongos , Animais , Morinda/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , alfa-Glucosidases/química , Estigmasterol/farmacologia , alfa-Amilases
12.
J Mol Graph Model ; 126: 108640, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37801809

RESUMO

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemic state. The α-glucosidase and α-amylase are considered two major targets for the management of Type 2 DM due to their ability of metabolizing carbohydrates into simpler sugars. In the current study, cheminformatics analyses were performed to develop validated and predictive models with a dataset of 187 α-glucosidase and α-amylase dual inhibitors. Separate linear, interpretable and statistically robust 2D-QSAR models were constructed with datasets containing the activities of α-glucosidase and α-amylase inhibitors with an aim to explain the crucial structural and physicochemical attributes responsible for higher activity towards these targets. Consequently, some descriptors of the models pointed out the importance of specific structural moieties responsible for the higher activities for these targets and on the other hand, properties such as ionization potential and mass of the compounds as well as number of hydrogen bond donors in molecules were found to be crucial in determining the binding potentials of the dataset compounds. Statistically significant 3D-QSAR models were developed with both α-glucosidase and α-amylase inhibition datapoints to estimate the importance of 3D electrostatic and steric fields for improved potentials towards these two targets. Molecular docking performed with selected compounds with homology model of α-glucosidase and X-ray crystal structure of α-amylase largely supported the interpretations obtained from the cheminformatic analyses. The current investigation should serve as important guidelines for the design of future α-glucosidase and α-amylase inhibitors. Besides, the current investigation is entirely performed by using non-commercial open-access tools to ensure easy accessibility and reproducibility of the investigation which may help researchers throughout the world to work more on drug design and discovery.


Assuntos
Inibidores Enzimáticos , Hipoglicemiantes , alfa-Glucosidases , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/química , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/química , Simulação de Acoplamento Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
13.
BMC Complement Med Ther ; 23(1): 440, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053195

RESUMO

BACKGROUND: Oxidative stress and diabetes are medical conditions that have a growing prevalence worldwide, significantly impacting our bodies. Thus, it is essential to develop new natural antioxidant and antidiabetic agents. Dypsis pembana (H.E.Moore) Beentje & J.Dransf (DP) is an ornamental palm of the family Arecaceae. This study aimed to broaden the understanding of this plant's biological properties by evaluating its in vitro antioxidant and antidiabetic activities. METHODS: The in vitro antioxidant activities of the crude extract, fractions, and selected isolates were evaluated by DPPH method. While the in vitro antidiabetic activities of these samples were evaluated by assessing the degree of inhibition of α-glucosidase. Additionally, molecular docking analysis was performed to investigate the interactions of tested compounds with two potential targets, the cytochrome c peroxidase and alpha glucosidase. RESULTS: The crude extract displayed the highest antioxidant activity (IC50 of 11.56 µg/ml), whereas among the fractions, the EtOAc fraction was the most potent (IC50 of 14.20 µg/ml). Among tested compounds, isoquercetrin (10) demonstrated the highest potency, with an IC50 value of 3.30 µg/ml, followed by rutin (8) (IC50 of 3.61 µg/ml). Regarding antidiabetic activity, the EtOAc (IC50 of 60.4 µg/ml) and CH2Cl2 fractions (IC50 of 214.9 µg/ml) showed activity, while the other fractions did not demonstrate significant antidiabetic effects. Among tested compounds, kaempferol-3-O-neohesperidoside (9) showed the highest antidiabetic activity, with an IC50 value of 18.38 µg/ml, followed by kaempferol (4) (IC50 of 37.19 µg/ml). These experimental findings were further supported by molecular docking analysis, which revealed that isoquercetrin and kaempferol-3-O-neohesperidoside exhibited strong enzyme-binding affinities to the studied enzyme targets. This analysis provided insights into the structure-activity relationships among the investigated flavonol-O-glycosides. CONCLUSION: The biological and computational findings revealed that isoquercetrin and kaempferol-3-O-neohesperidoside have potential as lead compounds for inhibiting cytochrome c peroxidase and alpha glucosidase enzymes, respectively.


Assuntos
Arecaceae , Citocromo-c Peroxidase , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/química , Quempferóis , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Extratos Vegetais/química , Flavonoides/química , alfa-Glucosidases/química
14.
Anal Methods ; 15(45): 6220-6228, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942997

RESUMO

Cellulose filter paper (CFP) is expected to be an ideal carrier for enzyme immobilization due to its sustainability and biocompatibility. However, the interaction between the carrier and enzyme might change the spatial conformation of the enzyme and its microenvironment, and thus the flexibility of the enzyme molecule or the transport of the substrate to the active site would be hampered. In this work, a two-component system of catechol and tetraethylene pentamine was used to replace dopamine, and a polydopamine-like composite layer was deposited on the surface of CFP to introduce amino groups, which was similar to the self-polymerization-adhesion behavior of dopamine. Using polyethylene glycol diglycidyl ether with flexible spacer arms as the cross-linking agent, α-glucosidase was covalently bonded to amino-modified CFP through an epoxy ring-opening reaction. The immobilized α-glucosidase exhibited greater tolerance to pH and high temperature. After 10 repeated uses, the immobilized α-glucosidase maintained relatively high enzyme activity. Its kinetic behavior was investigated to illustrate the reliability for enzyme inhibitor screening. Finally, a screening method combining an immobilized enzyme and capillary electrophoresis analysis was proposed and applied to screening inhibitors from 11 kinds of traditional Chinese medicines, among which Chebulae Fructus, Phyllanthi Fructus and Terminaliae Relliricae Fructus exhibited strong enzyme inhibitory activities.


Assuntos
Medicina Tradicional Chinesa , alfa-Glucosidases , alfa-Glucosidases/química , Reprodutibilidade dos Testes , Dopamina/farmacologia , Celulose/química , Enzimas Imobilizadas/química
15.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003703

RESUMO

α-Amylase is a generally acknowledged molecular target of a distinct class of antidiabetic drugs named α-glucosidase inhibitors. This class of medications is scarce and rather underutilized, and treatment with current commercial drugs is accompanied by unpleasant adverse effects. However, mammalian α-amylase inhibitors are abundant in nature and form an extensive pool of high-affinity ligands that are available for drug discovery. Individual compounds and natural extracts and preparations are promising therapeutic agents for conditions associated with impaired starch metabolism, e.g., diabetes mellitus, obesity, and other metabolic disorders. This review focuses on the structural diversity and action mechanisms of active natural products with inhibitory activity toward mammalian α-amylases, and emphasizes proteinaceous inhibitors as more effective compounds with significant potential for clinical use.


Assuntos
Doenças Metabólicas , alfa-Amilases , Animais , Humanos , alfa-Amilases/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Inibidores de Glicosídeo Hidrolases/química , Doenças Metabólicas/tratamento farmacológico , alfa-Glucosidases/química , Extratos Vegetais/uso terapêutico , Mamíferos/metabolismo
16.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37894878

RESUMO

Berries are rich in bioactive compounds, including antioxidants and especially polyphenols, known inhibitors of starch metabolism enzymes. Lactic acid fermentation of fruits has received considerable attention due to its ability to enhance bioactivity. This study investigated the effect of fermentation with L. mesenteroides of juice from the Chilean berry murta on antioxidant activity, release of polyphenols, and inhibitory activity against α-amylase and α-glucosidase enzymes. Three types of juices (natural fruit, freeze-dried, and commercial) were fermented. Total polyphenol content (Folin-Ciocalteu), antioxidant activity (DPPH and ORAC), and the ability to inhibit α-amylase and α-glucosidase enzymes were determined. Fermented murta juices exhibited increased antioxidant activity, as evidenced by higher levels of polyphenols released during fermentation. Inhibition of α-glucosidase was observed in the three fermented juices, although no inhibition of α-amylase was observed; the juice from freeze-dried murta stood out. These findings highlight the potential health benefits of fermented murta juice, particularly its antioxidant properties and the ability to modulate sugar assimilation by inhibiting α-glucosidase.


Assuntos
Antioxidantes , alfa-Glucosidases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Glucosidases/química , Fermentação , Glucose , Polifenóis/farmacologia , alfa-Amilases
17.
Sci Rep ; 13(1): 18597, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903808

RESUMO

Stachytarpheta jamaicensis is one of the folk medicines used for the treatment of diabetes in Ambon, Indonesia, but there are limited studies on the bioactivities of its constituents. This study aims to assess the antioxidant and antidiabetic activities of four extracts of S. jamaicensis leaves extracted using several solvents. Bioassay guided fractionation on each extract establishes for exploring S. jamaicensis leaves active compounds. The antioxidant was evaluated using the DPPH and ABTS methods, while the α-glucosidase inhibitory was carried out in vitro assay. The results showed that the methanol extract of S. jamaicensis leaves displays inhibition of DPPH, ABTS and α-glucosidase activity compared to other solvent extracts. Furthermore, 6ß-hydroxyipolamiide was successfully isolated from the methanol extract of S. jamicensis leaves which was reported to have α-glucosidase inhibitory activity with an IC50 of 539.17 µg/mL. Based on the results, S. jamaicensis could be recommended as an antioxidant and antidiabetic agent.


Assuntos
Antioxidantes , Inibidores de Glicosídeo Hidrolases , Antioxidantes/farmacologia , Antioxidantes/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Glucosidases/química , Metanol , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Solventes/química
18.
J Chromatogr A ; 1711: 464433, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37847969

RESUMO

Agrimonia pilosa Ledeb (APL) is a significant source of inhibitors for α-glucosidase, which is an essential target enzyme for the treatment of type 2 diabetes, cancer and acquired immune deficiency syndrome. Ligand fishing is a suitable approach for the highly selective screening of bioactive substances in complex mixtures. Yet it is unable to conduct biomedical imaging screening, which is crucial for real-time identification. In this case, a bioanalytical platform combining magnetic fluorescent ligand fishing and in-situ imaging technique was established for the screening and identification of α-glucosidase inhibitors (AGIs) from APL crude extract, utilizing α-glucosidase coated CuInS2/ZnS-Fe3O4@SiO2 (AG-CIZSFS) nanocomposites as extracting material and fluorescent tracer. The AG-CIZSFS nanocomposites prepared through solvothermal and crosslinking methods displayed fast magnetic separation, excellent fluorescence performance and high enzyme activity. The tolerance of immobilized enzyme to temperature and pH was stronger than that of free enzyme. Prior to proof-of-concept with APL crude extract, a number essential parameters (glutaraldehyde concentration, immobilized time, enzyme amount, reaction solution pH, incubation temperature, incubation time, percentage of methanol in eluen, elution times and eluent volume) were optimized using an artificial test mixture. The fished ligands were identified by UPLC-MS/MS and their biological activities were preliminarily evaluated by real-time cellular morphological imaging of human colon carcinoma (HCT-116) cells based on confocal laser scanning microscope (CLSM). Their α-glucosidase inhibitory activities were further verified and studied by classical pNPG method and molecular docking. The isolated compounds exhibited significant α-glucosidase inhibitory activities with a IC50 value of 11.57 µg·mL-1. Six potential AGIs including tribuloside, ivorengenin A, tormentic acid, 1ß, 2ß, 3ß, 19α-Tetra hydroxyurs-12-en-28-oic acid, corosolic acid and pomolic acid were ultimately screened out and identified from APL crude extracts. The proposed approach, which combined highly specific screening with in-situ visual imaging, provided a powerful platform for discovering bioactive components from multi-component and multi-target traditional Chinese medicine (TCM).


Assuntos
Agrimonia , Diabetes Mellitus Tipo 2 , Nanopartículas , Humanos , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/química , Cromatografia Líquida , Ligantes , Dióxido de Silício , Espectrometria de Massas em Tandem , Enzimas Imobilizadas/química , Fenômenos Magnéticos , Extratos Vegetais/farmacologia , Extratos Vegetais/química
19.
J Agric Food Chem ; 71(27): 10326-10337, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37288757

RESUMO

Food-derived α-glucosidase inhibitory peptides have gained significant interest in treating type 2 diabetes mellitus (T2DM) owing to their favorable safety profiles. Molecular docking combined with molecular dynamics simulation was performed to screen α-glucosidase inhibitory peptides from Ginkgo biloba seed cake (GBSC), and two novel peptides (Met-Pro-Gly-Pro-Pro (MPGPP) and Phe-Ala-Pro-Ser-Trp (FAPSW)) were acquired. The results of molecular docking and molecular dynamics simulation suggested that FAPSW and MPGPP could generate stable complexes with 3wy1, and the electrostatic and van der Waals forces played contributory roles in FAPSW and MPGPP binding to 3wy1. The α-glucosidase inhibition assay corroborated that FAPSW and MPGPP had good α-glucosidase inhibition capacity, with IC50 values of 445.34 ± 49.48 and 1025.68 ± 140.78 µM, respectively. In vitro simulated digestion results demonstrated that FAPSW and MPGPP strongly resisted digestion. These findings lay a theoretical foundation for FAPSW and MPGPP in treating T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Glicosídeo Hidrolases , Humanos , Simulação de Acoplamento Molecular , Inibidores de Glicosídeo Hidrolases/química , alfa-Glucosidases/química , Ginkgo biloba/metabolismo , Simulação de Dinâmica Molecular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeos/química , Sementes/metabolismo , Cinética
20.
Drug Dev Res ; 84(5): 962-974, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37186392

RESUMO

Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Several novel chromen-linked hydrazine carbothioamide (3a-r) were designed and synthesized by condensation of chromone-3-carbaldehyde with a variety of substituted thiosemicarbazides. The structures of these new analogues were elucidated through various advanced spectroscopic techniques (1 H NMR, 13 C NMR, and ESI-MS). The resulted compounds were screened for α-glucosidase inhibitory potential and all the compounds (3a-r) exhibited potent inhibition of α-glucosidase with IC50 values ranging 0.29-53.70 µM. Among them compounds 3c, 3f, 3h, and 3r displayed the highest α-glucosidase inhibitor capability with IC50 values of 1.50, 1.28, 1.08, and 0.29 µM, respectively. Structure-activity relationship showed that different substituted groups are responsible for the variation in the α-glucosidase inhibition. The kinetics studies of the most active inhibitor (3r) were performed, to investigate the mode of inhibition and dissociation constants (Ki), that indicated a competitive inhibitor with Ki value of 1.47 ± 0.31 µM. Furthermore, molecular docking studies was performed to reveal the possible interactions, such as H-bonding, or π-π stacking, with the key residues of α-glucosidase. Docking analysis revealed the importance of hydrazine carbothioamide moiety of compounds in the attachment of ligands with the crucial residues of α-glucosidase. The estimated pharmacokinetic, physicochemical, and drug likeness properties of compounds 3a-r reflects that these molecules have acceptable range of these properties.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , Estrutura Molecular , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Relação Estrutura-Atividade , Hidrazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...